Calcium-activated potassium channels contribute to human coronary microvascular dysfunction after cardioplegic arrest.

نویسندگان

  • Jun Feng
  • Yuhong Liu
  • Richard T Clements
  • Neel R Sodha
  • Kamal R Khabbaz
  • Venkatachalam Senthilnathan
  • Katherine K Nishimura
  • Seth L Alper
  • Frank W Sellke
چکیده

BACKGROUND Cardioplegic arrest (CP) followed by reperfusion after cardiopulmonary bypass induces coronary microvascular dysfunction. We investigated the role of calcium-activated potassium (K(Ca)) channels in this dysfunction in the human coronary microvasculature. METHODS AND RESULTS Human atrial tissue was harvested before CP from a nonischemic segment and after CP from an atrial segment exposed to hyperkalemic cold blood CP (mean CP time, 58 minutes) followed by 10-minute reperfusion. In vitro relaxation responses of precontracted arterioles (80 to 180 mum in diameter) in a pressurized no-flow state were examined in the presence of K(Ca) channel activators/blockers and several other vasodilators. We also examined expression and localization of K(Ca) channel gene products in the coronary microvasculature using reverse transcriptase-polymerase chain reaction, immunoblot, and immunofluorescence photomicroscopy. Post-CP reperfusion relaxation responses to the activator of intermediate and small conductance K(Ca) channels (IK(Ca)/SK(Ca)), NS309 (10(-5) M), and to the endothelium-dependent vasodilators, substance P (10(-8) M) and adenosine 5diphosphate (10(-5) M), were significantly reduced compared with pre-CP responses (P<0.05, n=8/group). In contrast, relaxation responses to the activator of large conductance K(Ca) channels (BK(Ca)), NS1619 (10(-5) M), and to the endothelium-independent vasodilator, sodium nitroprusside (10(-4) M), were unchanged pre- and post-CP reperfusion (n=8/group). Endothelial denudation significantly diminished NS309-induced vasodilatation and abolished substance P- or adenosine 5 diphosphate-induced relaxation (P<0.05), but had no effect on relaxation induced by either NS1619 or sodium nitroprusside. The total polypeptide levels of BK(Ca), IK(Ca), and SK(Ca) and the expression of IK(Ca) mRNA were not altered post-CP reperfusion. CONCLUSIONS Cardioplegic arrest followed by reperfusion after cardiopulmonary bypass causes microvascular dysfunction associated with and likely in part due to impaired function of SK(Ca) and IK(Ca) channels in the coronary microcirculation. These results suggest novel mechanisms of endothelial and smooth muscle microvascular dysfunction after cardiac surgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired function of coronary BK(Ca) channels in metabolic syndrome.

The role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3-6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that ...

متن کامل

Preservation of myocyte contractile function after hypothermic, hyperkalemic cardioplegic arrest with 2, 3-butanedione monoxime.

One proposed contributory mechanism for depressed ventricular performance after hypothermic, hyperkalemic cardioplegic arrest is a reduction in myocyte contractile function caused by alterations in intracellular calcium homeostasis. Because 2,3-butanedione monoxime decreases intracellular calcium transients, this study tested the hypothesis that 2,3-butanedione monoxime supplementation of the h...

متن کامل

Effects of Adenosine

Background. Cardioplegic solutions have been used to enhance myocardial preservation during cardiac surgery. The benefits derived from preventing myocardial ischemia with cardioplegic solutions may, however, be countered by tissue damage that occurs when the myocardium is reperfused with oxygenated blood. Furthermore, cardioplegia-induced endothelial dysfunction may contribute to depressed myoc...

متن کامل

Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients

BACKGROUND Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. METHODS AND RESULTS Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hem...

متن کامل

Diabetes and Cardioplegia.

Cardiac surgery with cardiopulmonary bypass and cardioplegic arrest is associated with injury to the vasculature and microcirculation leading to coronary microvascular dysfunction, permeability changes and cardiac dysfunction. In the setting of cardiopulmonary bypass with cardioplegia, poorly-controlled diabetes is associated with significant changes in endothelium-dependent and independent vas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 118 14 Suppl  شماره 

صفحات  -

تاریخ انتشار 2008